在量子计算中,变分量子算法(VQAS)非常适合于在从化学中寻找特定应用中的物品的最佳组合一切融资。具有梯度下降优化算法的VQA的训练显示出良好的收敛性。在早期阶段,在嘈杂的中间级量子(NISQ)器件上的变分量子电路的模拟遭受了嘈杂的输出。就像古典深度学习一样,它也遭受了消失的渐变问题。研究损失景观的拓扑结构是一种逼真的目标,以在消失梯度存在的存在下可视化这些电路的曲率信息和可训练。在本文中,我们计算了Hessian,并在参数空间中的不同点处可视化变分量子分类器的损失景观。解释变分量子分类器(VQC)的曲率信息,并显示了损耗函数的收敛。它有助于我们更好地了解变形量子电路的行为,以有效地解决优化问题。我们通过Hessian在量子计算机上调查了变形量子分类器,从一个简单的4位奇偶校验问题开始,以获得对黑森州的实际行为的洞察力,然后彻底分析了Hessian的特征值对培训糖尿病数据集的变分量子分类器的行为。最后,我们展示了自适应Hessian学习率如何在训练变分电路时影响收敛。
translated by 谷歌翻译
感知哈希映射图像具有相同语义内容与相同的$ n $ bit Hash值相同的图像,同时将语义不同的图像映射到不同的哈希。这些算法在网络安全方面具有重要的应用,例如版权侵权检测,内容指纹和监视。苹果的神经哈什(Neuralhash)就是这样一种系统,旨在检测用户设备上非法内容的存在,而不会损害消费者的隐私。我们提出了令人惊讶的发现,即神经锤差是线性的,这激发了新型黑盒攻击的发展,该攻击可以(i)逃避对“非法”图像的检测,(ii)产生近乎收集,以及(iii)有关哈希德的泄漏信息。图像,全部无访问模型参数。这些脆弱性对神经哈什的安全目标构成了严重威胁;为了解决这些问题,我们建议使用经典加密标准提出一个简单的修复程序。
translated by 谷歌翻译
提升是一种合奏学习方法,它将弱者的学习者转换为PAC学习框架中的强大学习者。 Freund和Schapire设计了名为Adaboost的Godel Priad获奖算法,该算法可以促进学习者,从而输出二进制假设。最近,Arunachalam和Maity提供了第一个具有相似理论保证的量子增强算法。他们的算法,我们称之为Qadaboost,因此是adaboost的量子适应,仅适用于二元假设情况。就弱学习者的假设类别的VC维度而言,Qadaboost的四边形比Adaboost更快,但在弱学习者的偏见中多一级差。 Izdebski等。关于我们是否可以促进输出非二元假设的量子弱学习者提出了一个悬而未决的问题。在这项工作中,我们通过开发QRealBoost算法来解决这个开放的问题,该算法是由经典的室内启动算法激发的。主要的技术挑战是,鉴于量子子例程是嘈杂的和概率的,为融合,泛化界限和量子加速提供可证明的保证。我们证明,QRealBoost在Adaboost上保留了Qadaboost的二次加速度,并进一步实现了Qadaboost的多项式加速,从学习者的偏见和学习者为学习目标概念类别所花费的时间而言。最后,我们对QRealBoost进行了经验评估,并通过对QRealBoost对Qadaboost,Adaboost和Realboost的收敛性能进行基准对MNIST数据集和乳腺癌Wisconsin Dataset的子集进行基准收敛性能,从而对量子模拟器进行了经验评估。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译
As language models have grown in parameters and layers, it has become much harder to train and infer with them on single GPUs. This is severely restricting the availability of large language models such as GPT-3, BERT-Large, and many others. A common technique to solve this problem is pruning the network architecture by removing transformer heads, fully-connected weights, and other modules. The main challenge is to discern the important parameters from the less important ones. Our goal is to find strong metrics for identifying such parameters. We thus propose two strategies: Cam-Cut based on the GradCAM interpretations, and Smooth-Cut based on the SmoothGrad, for calculating the importance scores. Through this work, we show that our scoring functions are able to assign more relevant task-based scores to the network parameters, and thus both our pruning approaches significantly outperform the standard weight and gradient-based strategies, especially at higher compression ratios in BERT-based models. We also analyze our pruning masks and find them to be significantly different from the ones obtained using standard metrics.
translated by 谷歌翻译
Neoplasms (NPs) and neurological diseases and disorders (NDDs) are amongst the major classes of diseases underlying deaths of a disproportionate number of people worldwide. To determine if there exist some distinctive features in the local wiring patterns of protein interactions emerging at the onset of a disease belonging to either of these two classes, we examined 112 and 175 protein interaction networks belonging to NPs and NDDs, respectively. Orbit usage profiles (OUPs) for each of these networks were enumerated by investigating the networks' local topology. 56 non-redundant OUPs (nrOUPs) were derived and used as network features for classification between these two disease classes. Four machine learning classifiers, namely, k-nearest neighbour (KNN), support vector machine (SVM), deep neural network (DNN), random forest (RF) were trained on these data. DNN obtained the greatest average AUPRC (0.988) among these classifiers. DNNs developed on node2vec and the proposed nrOUPs embeddings were compared using 5-fold cross validation on the basis of average values of the six of performance measures, viz., AUPRC, Accuracy, Sensitivity, Specificity, Precision and MCC. It was found that nrOUPs based classifier performed better in all of these six performance measures.
translated by 谷歌翻译
Customers are rapidly turning to social media for customer support. While brand agents on these platforms are motivated and well-intentioned to help and engage with customers, their efforts are often ignored if their initial response to the customer does not match a specific tone, style, or topic the customer is aiming to receive. The length of a conversation can reflect the effort and quality of the initial response made by a brand toward collaborating and helping consumers, even when the overall sentiment of the conversation might not be very positive. Thus, through this study, we aim to bridge this critical gap in the existing literature by analyzing language's content and stylistic aspects such as expressed empathy, psycho-linguistic features, dialogue tags, and metrics for quantifying personalization of the utterances that can influence the engagement of an interaction. This paper demonstrates that we can predict engagement using initial customer and brand posts.
translated by 谷歌翻译